
Annotating UDDI Registries to Support the Management of
Composite Services

M. Brian Blake, Michael F. Nowlan, Ajay Bansal, and Srividya Kona
Department of Computer Science

Georgetown University
Washington, DC
202 687-3084

{mb7,mfn3,ab683,sk558}@georgetown.edu

ABSTRACT
The future of service-centric environments suggests that
organizations will dynamically discover and utilize web services
for new business processes particularly those that span multiple
organizations. However, as service-oriented architectures mature,
it may be impractical for organizations to discover services and
orchestrate new business processes on a daily, case-by-case basis.
It is more likely that organizations will naturally aggregate
themselves into groups of collaborating partners that routinely
share services. In such cases, there is a requirement to maintain
an organizational memory with regards to the capabilities offered
by other enterprises and how they fit within relevant business
processes. As a result, registries must maintain information about
past business processes (i.e. relevant web services and their
performance, availability, and reliability). This paper discusses
and evaluates several hybrid approaches for incorporating
business process information into standards-based service
registries.

Categories and Subject Descriptors
D.2.11 [Software]: Software Engineering: Software Architectures
– domain specific architectures.

General Terms
Performance, Design, Experimentation, Security, and
Standardization

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
Service-oriented computing [10] promotes the development

of modular domain-specific capabilities that can be advertised to
and shared among collaborating organizations.

Moreover, the syntactic and semantic metadata that accompanies
these services [9][11] enable the discovery of these capabilities,
on-demand. Discovery, in this environment, largely depends on
the accessibility and capabilities of the repositories for which
these services are stored. Universal Description, Discovery, and
Integration (UDDI) is the leading specification for the
development of service-based repositories or registries. UDDI
registries of the future should facilitate fast search and discovery
of relevant web services akin to the performance currently
associated with resolving a domain name. Although, performance
and federation are two important aspects of UDDI, an additional
requirement for UDDI should be effective process-oriented
storage and retrieval. Currently, the abilities to browse and
discover independent services as characterized by their
overarching business name and/or their capability name are
important fundamental operations. However, as service-oriented
architectures mature, composite services (i.e. capabilities based
on the workflow composition of multiple atomic services) will
also be important to persist and manage. UDDI currently has
limited support for managing business processes [6]. Although
not all federated service registries will need business process
annotations, we suggest that a subset of registries frequently used
by partnering organizations would benefit from maintaining
historical process information.

 Currently, there are numerous languages and protocols
that support the specification and execution [3][4][5][9] of
composite web services. Unfortunately, techniques for
incorporating the underlying process information into UDDI
registries are limited. In this work, we address several questions
as listed below.

� What are the relevant descriptive attributes of composite web
services that must be represented in web service registries?

� What are the relevant use cases for process-oriented service
registries?

� What are the state-of-the-art methods for incorporating
process information into registries and the corresponding
challenges?

� What are the most efficient and effective approaches, both
qualitatively and quantitatively, for process management of
services in UDDI registries?

This paper proceeds in the next section with a survey of related
work and a discussion of the state of the practice. The next
section formalizes a composite service by detailing the most
relevant descriptive attributes. Next, we describe the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.
 2146

requirements of a process-oriented registry. We next introduce
several hybrid approaches for adding process information to web
service repositories. Finally, we describe a case study and
experimental evaluation of both approaches.

2. RELATED WORK
Universal Description, Discovery and Integration (UDDI)

describes the data model associated with a web-accessible registry
for the storage and management of web services. Three core
hierarchical objects specify the service provider (businessEntity),
the web service (businessService), and information about how the
service is binded (bindingTemplate). These foundational objects
can be extended with the use of technical models or tModels.
TModels facilitate the further description of businessEntities,
businessServices, and bindingTemplates through classification
based on metadata. Each tModel of a businessService represents
a certain behavior or classification system that the service must
implement. An example would be a web service that takes a state
abbreviation as input. This web service would probably choose to
reference the tModel that represents the US-State abbreviation
classification system. A person looking at the service’s
bindingTemplate would then be able to see a reference to the US-
State System and know that a state should be entered with its
abbreviation. UDDI also supports other structures called
keyedReferences that allow previously mentioned core objects to
be associated to tModels. KeyedReferences consist of a
tModelKey, keyValue, and keyName. The tModelKey identifies
the referenced tModel. The keyValue allows a categorization of
the link between the core object, and the tModel and the keyName
is a text string readable for humans. In UDDI v3,
keyedReferences can be aggregated with keyedReferenceGroups.

The strength of the tModels and keyedReferences is that
further information about the main UDDI objects (i.e.
businessEntities, businessServices, and bindingTemplates) are not
populated in the repository. Tmodels merely point to web-
accessible documents. This paradigm both reduces maintenance
of the registry and promotes overall robustness. However, this
paradigm also makes it difficult to associate web services that are
stored in the registry, which is a necessary requirement for
describing business processes within the registry.

The most common research projects tend to address the
problem of federating UDDI registries [1] [2][12], although, of
most relevance to our work, are the projects that directly address
the problem of business process annotations that associate
services. Perhaps the leading approach to inserting business
processes is the construction of a tModel classification system
that mirrors a particular taxonomy of business processes. These
tModels can then be used as pointers to the corresponding
business process description documents. In industry, several
OASIS technical reports [15] [17] describe high-level approaches
to integrating tModel classifications with ebXML and BPEL4WS
descriptions. Other research projects detail specialized domain-
specific methods that leverage the same basic approach [6] [13]
These are reasonable approaches, but all business descriptions are
defined by external business process documents that are
decoupled from the individual services. In fact, since services
may be captured at individual locations, replacing services or
even discontinuing the offering of a particular business process
becomes difficult. In these cases, centralizing some vital part of

the process information can be valuable. Luo et al. [8] and
Srinivasan et al. [14] use semantic notations embedded in UDDI
tModels to associate services. This approach allows for more rich
definitions, but the underlying limitations caused by distribution
also apply. Other approaches look at the development of external,
integrated software mechanisms that run parallel with the UDDI
registry [18] [19]. These approaches tend to depart from the
essence of the SOA paradigm as they promote proprietary, less
standardized solutions.

In this paper, we experiment with a combination of external
process documentation and annotations that are embedded
directly in the UDDI registry. Prerequisite to any solution, it is
important to understand the required aspects of the web services-
based business process

3. ANATOMY OF WEB SERVICES-BASED
PROCESSES
 Web-services based business processes also referred to as web
service workflows are similar to traditional processes that are
established between human stakeholders. We propose a model
that intersects business process semantics with web service-based
data management techniques. There are few approaches that
formally describe this intersection. Figure 1 illustrates the
metamodel of a web services-based business process using a
Unified Modeling Language (UML) class diagram. A difference
is, as opposed to human-managed tasks or steps, web services
enact the underlying steps. A web services-based business
process, BP, contains user data endpoints, DE , defined below.

Figure 1. Metamodel of a Web Service-Based Business Process.

Definition (UserData EndPoint):

The user data end point is defined as a pair DE = (ID, OD) where
ID represents the input information of the business process
provided by the user and OD represents the output information,
ultimately generated by the completion of the business process.
The business process also has a sequence of tasks (realization of
the steps) that are implemented by a set of services, � = {S1, S2,
S3, ….Sn}. Each service Si has its own input, ISi, and output, OSi,
information; however the set of all input/output information of a
service is less relevant than the subset of inputs and outputs that

2147

are relevant to the business process. In addition, a service can also
be defined with its quality of service information and its URI
location.

Definition (Service):
A service is a tuple of its inputs, outputs, QoS parameters, and its
URI location. S = (IS , OS , QS , US) is the representation of a
service where IS is the input list, OS is the output list, QS is the list
of quality of service parameters and US represents the URI
location. Each step in the business process is defined by a
transition, T, that defines the shared information between the
output, OT, of the preceding step that connects to the input, IT , of
the subsequent step.

Definition (Transition):
A transition is represented as a tuple of its inputs, outputs, flow-
type, pre-conditions, and post-conditions. T = (IT , OT ,FT , CPre ,
CPost) is the representation of the transition where IT is the input
list, OT is the output list, FT is the flow type, CPre represents the
pre-conditions of the transition and CPost represent the post-
conditions of the transition. Ultimately, the business process can
be formally defined as follows:

Definition (BusinessProcess):
A BusinessProcess is defined as a tuple BP = (DE, �, �) where DE
represents the user data endpoint, � is the set of services involved
in the business process, and � is the set of transitions in the
workflow .

DE = (ID, OD);
� = {S1, S2, ..., Sn} where Si = (ISi , OSi , QSi , USi),
for all i = 1 to n;
� = {T1, T2, .…, Tn} where Ti = (ITi , OTi ,FTi , CPrei ,
CPosti), for all i = 1 to n.

The following conditions should hold for a valid business
process:

1. For all Si � � and Ti � �, the inputs of Si are
subsumed by the inputs of Ti , i.e., ISi C ITi

2. For all Si � � and Ti � �, the outputs of Si

subsumes the outputs of Ti , i.e., OTi C OSi

3. For all Ti , Ti+1 � �, the post-conditions of Ti imply
the pre-conditions of Ti+1 , i.e., CPosti => CPre i+ 1

4. For all Ti , Ti+1 � �, the outputs of Ti along with
the user data inputs of the business process
subsume the inputs of Ti+1 , i.e., (OTi U ID) C IT i+ 1

5. The inputs of the business process subsume the
inputs of the first transition, T1 (where T1 � �),
i.e., IT1 C ID

6. The outputs of the business process are subsumed
by the outputs of the last transition Tn (where Tn �
�), i.e., OD C OTn

The cardinality of data endpoints, services, and transitions vary
for each step, such that is necessary to develop containers to
aggregate the information into sets. The notion of containers is
central to business process languages, such as BPEL4WS and
BPML [3] [4], for aggregating information related to
subprocesses.

4. BUSINESS PROCESS AND SERVICE
REGISTRIES
In order for organizations to understand their business processes
defined with web services, it is important that their process
databases include relevant process information as defined in the
previous section. Organizations should be able to generally access
process information in addition to the service-specific details.

4.1 Potential Use Cases
There are several functions required by a registry that supports
composite services as business processes. Figure 3 illustrates the
functions of such a repository depicted as a UML use case
diagram. The basic registry actors follow the SOA paradigm (i.e.
service providers and consumers). Incorporating business process
metadata into the registry also supports the interaction of
intelligent software components or agents to autonomously
maintain the integrity of the information. Service providers should
be able to insert one or more services into the registry. Service
consumers should be able to either browse or explicitly search the
repository based on several attributes such as the name/type of
business, service, or process. Although only available using
specialized approaches, consumers may also want to search by
service/process message names. We focus on three major features
of such a repository.

� Advertising a set of services aggregated as a process

 When partnering organizations decide to share services, there
may be a predefined understanding for orchestration. As such,
these organizations must insert their relevant services into shared
UDDI registries annotated by process-based information (i.e. the
underlying control flow and data flow).

� Discovering services associated with processes and
discovering processes associated with services

 Current UDDI registries facilitate browsing of services by
business name and by service name. A process-oriented registry
will also support browsing by process name or type. Consumers
should also be able to find all services associated with a particular
process.

� Managing process information by software agents

 Once process information is annotated into a registry, intelligent
agents can regularly check the health of the underlying services.
Agents can look for indexing configurations that best support the
storage of the process information. In addition, agents can record
QoS information supplied by service consumers. This QoS
information can represent individual services or the process as a
whole.

4.2 Alternative Hybrid Approaches
By extending and leveraging the UDDI specification, we have
identified several approaches for annotating business processes
within service registries. Every service in a UDDI registry has a
bindingTemplate structure, which stores references to tModels.
TModels are “sources for determining compatibility of Web
services and keyed namespace references” [16]. This means that
tModels identify how to interact with a web service by describing
the technologies it implements. Although, the UDDI registry

2148

usually implements default tModels, such as the State
Abbreviation System, it is also possible for an administrator of the
registry to create tModels, on-demand. There are two approaches
for using tModels to describe web services-based business
processes.

� Annotating business process information directly into the
UDDI registry

A new tModel is created for every business process that is
identified in the registry. In addition, a parent tModel is created
that simply classifies any tModel that annotates a business process
as such. In this way, when a new process chain is added or
identified in the registry, a tModel that points to the parent tModel
is created to represent the process. Furthermore, the categoryBag
element is used to store references to all the processes of which
the service is a part. Figure 2 shows an example tModel. Notice
that the keyName of the keyedReference contains the service
name and additional control flow information. Also, the
keyValue maintains the sequence number of the service in the
process. Figure 4 demonstrates the actions taken by the registry
to identify and store the existence of a composite web service.

� Defining business process information using external

markup documents

 Figure 5 details the steps for annotating a business process within
the registry using the UDDI data structures. Perhaps the leading
approach in related work is the use of an external document (e.g.
BPEL4WS and ebXML) to store the process information. This
method involves simply adding an entry to each of the process
documents associated with the relevant services. The document
could exist centrally on a main server, or locally with each service
provider.

<tModel tModelKey="176a3131-0c20-45d1-b31d-efb4f61b8b14">
 <description>This tModel represents the process starting with
 firstService and ending with thirdService. </description>
 <categoryBag>
 <keyedReference keyName="uddi:Process-Representing"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 </categoryBag>
</tModel>

<businessService>
 <name>firstService</name>
 <categoryBag>
 <keyedReference
 tModelKey="176a3131-0c20-45d1-b31d-efb4f61b8b14"
 keyName="SERV=firstService, TRAN = Sequence"
 keyValue="1"/>
 </categoryBag>
 </businessService>

<businessService>
 <name>secondService</name>
 <categoryBag>
 <keyedReference
 tModelKey="176a3131-0c20-45d1-b31d-efb4f61b8b14"
 keyName="SERV = secondService, TRAN = Sequence"
 keyValue="2"/>
 </categoryBag>
 </businessService>

<businessService>
 <name>thirdService</name>
 <categoryBag>
 <keyedReference
 tModelKey="176a3131-0c20-45d1-b31d-efb4f61b8b14"
 keyName="SERV=thirdService, TRAN = Sequence"
 keyValue="3"/>
 </categoryBag>
 </businessService>

Figure 2. Sample Process-Oriented TModel.

Figure 3. Process-Oriented Service Repository Use Cases

(** Shaded areas are not currently well supported in the state-of-the-art)

2149

Annotate(VS): Annotating Function
VS Vector of serviceKeys for services in chain
GSFIRST The first service in the vector
GSLAST The last service in the vector
TM The newly created process-tModel
TMKEY The newly created tModel’s key
PM The tModel Process-Classification System
CB The CategoryBag of an individual structure
S An individual service
KR KeyedReference – A pointer to a tModel
A(VS, TM) Function to add a KR to CB of Services
MakeTM(GSFIRST , GSLAST) Function to make a new TM

A(VS , TM)
 KR = TMKEY

 forAll S in VS

 S.CB += KR
 return VS

MakeTM(GSFIRST , GSLAST)
 TM.CB += PM
 TM.description = GSFIRST , GSLAST
 return TM

Annotate(VS)
 TM = MakeTM(GSFIRST , GSLAST)
 return A(VS , TM)

Figure 4. Annotating a Business Process of Web Services within
the UDDI Data Model.

Figure 5. Leveraging External Process Documents.

4.3 Alternative Hybrid Approaches
Both of the hybrid approaches also have other functions relevant
to a business-oriented registry.

� Service Deletions or Changes when using UDDI Structure
Method

As the registry is updated when a process is identified, it will also
change when a service is removed or replaced. These actions

cause the process workflow chain to be incomplete. In this case,
all the services in the chain are affected and they must modify
their process annotation method (either XML document or
CategoryBag) by removing the process that is broken. When a
service is deleted, all the tModels that it points that represent
composite web services (excluding simple classifications
represented in the bindingTemplate) must be deleted. Any other
services in the registry that reference these tModels must remove
the reference from their categoryBags. In the future, registries
may be able to search for replacements services as opposed to
deleting the process.

� Service Deletions or Changes when Using External Process
Documentation

External process documents contain one entry for each process.
Irrespective of the process document notations, each entry will
define the serviceKeys of the services in the particular process. In
this approach, these serviceKeys are used to find all services that
share a process with the deleted service. The registry then edits
the relevant XML documents by removing the entry that
corresponds to the broken process.

� Query for Processes by Service Name using UDDI Data
Structure Method

The last action that can be taken on a registry, and perhaps the
most desired ability, is the ability to aggregate the information
and list of services for every process in which a particular service
plays a role. The serviceKey is used to get the service’s
categoryBag. The categoryBag contains references to all the
tModels, that represent all relevant processes. The registry is then
queried to find all services which point to any one of the tModels
in their categoryBags. The chain of services is then sorted by the
tModels and is returned as process.

� Query for Processes by Service Name using External Process
Documentation

The external document method is quicker because it does not
require querying the registry. The XML document for a service is
retrieved. In this document is a list of entries, each pertaining to
one composite web service. Each entry contains the serviceKey
for each service in that particular chain. These services can be
retrieved with a single call to the registry by compiling a vector of
the serviceKeys. The retrieved service information is then sorted
by the order of the entries in the initial service’s process
document and displayed.

5. CASE STUDY: A GENERAL UDDI
BUSINESS EXPLORER
Once process information is associated with or incorporated into a
UDDI registry, new graphical user interfaces can be created to
support enhanced service discovery and manipulation. As a part
of this work, we designed and experimented with a new user
interface front-end (i.e. UDDI-P) to the jUDDI registry Error!
Reference source not found.. A screenshot of the design of the
interface is shown in Figure 6. Using this new interface, a user

Annotate(VS): Annotating Function
MakeEntry(VS) Function to make a new TM
A(VS , E) Function to add entry to XML Doc.
VS Vector of serviceKeys for services in chain
E An entry containing a list of services
S An individual service
S.KEY Service key
D A service’s description element
FS A service’s XML document file
A(VS , E)
 forAll S in VS

 S. FS += E
 return VS

MakeEntry(VS)
 forAll S in VS
 E += S.KEY
 return E

Annotate(VS)
 forAll S in VS

 S.D = FS

 E = MakeEntry(VS)
 return A(VS , E)

2150

has the capability of browsing known process names as shown on
the left side of Figure 6. Once a process is identified, the
consumer can further decide to analyze the process to see if it
meets the organization need. The interface can display
parameters such as estimated delivery date and price range based
on service level objectives associated with the process stored in
the registry. By embedding process information into the registry,
classification of processes can occur to the point where they
themselves function as individual services. On the right side of
the interface, the user has the ability to browse each process
meeting the search criteria by price and delivery. This sort of
interface would enable a separate interface that allows the
services to be executed.

Figure 6. UDDI-P: A Prototype User Interface for Process-Based

Service Management.

6. EXPERIMENTATION & EVALUATION
In previous sections, two distinct hybrid approaches for
aggregating UDDI services into business processes were
introduced. The leading approaches in published works suggest
using external mark-up documents to describe business processes.
An alternative approach is incorporating specific business process
information directly into the registry. We experimented to
characterize the performance of these approaches on our
prototype repository. The performance is illustrated in Table 1
and Figure 7 based on the use cases illustrated in Figure 3.

In general, the difference in performance between adding
individual services, adding a chain, and annotating services with
business process annotations were only negligibly different
between the two approaches. However, deleting a service was
approximately three times faster when external business process
documents were used. Another variation in performance is
associated with retrieving all service IDs associated with a
particular process (or aggregating the services). The aggregation
time increased linearly with the increase in size of the UDDI
registry embedded process information. The main reason for
disparity between the approaches is due to the fact that the latter
approach requires a significant query within the repository. This
approach must retrieve the categoryBag for all services in the
repository and search those structures for a particular
keyedReference. The external business process document does
not require this step since the process information for a service is
stored in one location: the XML-based document. The retrieval
of this document is much faster when compared to the query that
must take place within the registry. Although the performance for
an external file is more favorable, having external BPEL4WS
files causes the duplication of process information (i.e. the same
process entry could appear in multiple files that may be attached
to the underlying services). Depending on the management of the
BPEL4WS files, centralizing the process within the repository
may be more advantageous. In such cases, embedding processes
with the registry represents an effective solution.

Table 1. Performance of External Document and Annotated UDDI Repository (milliseconds)

Repo
Size

Add
Serv.
(ms)

Add
Composite

(ms)

Annotate
(Note)
(ms)

Collect
Service IDs
by Process

(Aggregate)
(ms)

Del. Serv.
(ms)

150 1573 2500 1500 1500 1900
330 1573 2700 1700 1500 1900
600 1573 2600 1600 1500 1900

Ext.
Process

Doc 850 1573 2600 1600 1500 1900

150 1573 2800 2100 2600 7790
330 1573 3000 2100 4000 7790
600 1573 3000 2100 5700 7790

Internal
UDDI
Data

Structure 850 1573 3000 2100 7450 7790

2151

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

R
ep

o=
15

0

R
ep

o=
33

0

R
ep

o=
60

0

R
ep

o=
85

0

R
ep

o=
15

0

R
ep

o=
33

0

R
ep

o=
60

0

R
ep

o=
85

0

External XML Document Annotated UDDI

Add Service
Add Composite
Note
Aggregate
Delete Service

Figure 7. Comparison of the Performance (ms) for Storing Process Information in External Document versus Annotating the UDDI

Repository (by number of services).

7. CONCLUSIONS
An innovation in this paper is the formalized model for web
services-based business process and the relevant use cases for
using this information. In addition, we introduce the design of a
new interface for business-based UDDI interactions. Our
experimentation evaluates the two leading approaches for
capturing process information in UDDI registries. Overall
performance information does not suggest a quantitative
advantage for embedding process information directly into the
repository. However, qualitatively, maintenance is less extensive
since process information is centralized in a potentially federated
registry. As future work, we plan to continue developing a
process-oriented UDDI explorer and experiment on new
approaches for interface design.

8. ACKNOWLEDGMENTS
We acknowledge fruitful conversations with Brian Schott and
Robert Graybill of the University of Southern California, ISI-East
and Suzy Tichenor of the Council of Competitiveness. This
material is based on research sponsored by DARPA under
agreement number FA8750-06-1-0240. This U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

9. REFERENCES
[1] Al-Masri, E. and Mahmoud, Q.H., “Crawling Multiple UDDI

Business Registries”, Proceedings of the 16th International
Conference on the World Wide Web, Banff, Alberta, Canada,
2007

[2] Blake, M.B., Sliva, A.L., zur Muehlen, M., and Nickerson, J.
“Binding Now or Binding Later: The Performance of UDDI
Registries”, IEEE Hawaii International Conference of
System Sciences (HICSS-2007), Track on Technology and
Strategies for Realizing Service-oriented Architectures with
Web services, January 2007

[3] WS-BPEL(2008):
http://www.ibm.com/developerworks/library/specification/w
s-bpel/

[4] BPML (2008): http://www.ebpml.org/bpml.htm (currently
moved to OMG)

[5] BPMN (2008): http://www.bpmn.org/
[6] Dogac, A., Tambag, Y., Pembecioglu, P, Pektas, S., Laleci,

G., Gokhan, K., Toprak, S., and Kabak, Y. “An ebXML
infrastructure implementation through UDDI registries and
RosettaNet PIPs” Proceedings of the 2002 ACM SIGMOD
Conference (SIGMOD 2002), Madison, Wisconsin, June
2002

[7] jUDDI (2008): http://ws.apache.org/juddi/
[8] Luo, J., Montrose, B., Kim, A., Khashnobish, A., Kang, M.

“Adding OWL-S Support to. the Existing UDDI
Infrastructure” Proceedings of the 4th International
Conference on Web Services (ICWS2006), Chicago, Ill,
November 2006.

[9] OWL-S(2008): http://www.daml.org/services/owl-s/
[10] Papazoglou, M. “Service-oriented computing: Concepts,

characteristics and directions. In Proc. of WISE ‘03
[11] RDF (2008): http://www.w3.org/RDF/
[12] Sivashanmugam, K., Verma, K., and Sheth, A. Discovery of

Web Services in a Federated Registry Environment,
Proceedings of 4th IEEE International Conference on Web
Services (ICWS), pp. 270-278, 2004.

[13] Spies, M., Schoning, H., and Swenson, K. “Publishing
Interoperable Services and Processes in UDDI” The 11th
Enterprise Computing Conference (EDOC 2007), Annapolis,
MD, October 2007

[14] Srinivasan, N., Paolucci, M. and Sycara, K. "Adding OWL-S
to UDDI, implementation and throughput," Proceedings of
First International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC 2004), San Diego,
California, USA, 2004

[15] UDDI as the registry for ebXML Components, OASIS
Technical Note, February 2004, Accessed (2008):
http://www.oasis-open.org/committees/uddi-
spec/doc/tn/uddi-spec-tc-tn-uddi-ebxml-20040219.htm

2152

[16] Universal Description, Discovery, and Integration (UDDI)
(2008): http://www.uddi.org/pubs/uddi_v3.htm

[17] Using BPEL4WS in UDDI Registry, OASIS Technical Note,
July 2005 Accessed (2008): http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel-
20040725.htm

[18] Zhang, L-J., Zhou, Q., and Chao, T., “A Dynamic Services
Discovery Framework for Traversing Web Services

Representation Chain”, In Proceedings of the International
Conference on Web Services (ICWS 2004), 2004

[19] Zhang, M., Cheng, Z., Zhao, Y. Huang, J.Z. Yinsheng,
L., Zang, B. “ADDI: an agent-based extension to UDDI for
supply chain management” Proceedings of the Ninth Int
Conference on CSCW in Design, Shanghai, China, May 2005

2153

